.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "advanced/image_processing/auto_examples/plot_spectral_clustering.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end <sphx_glr_download_advanced_image_processing_auto_examples_plot_spectral_clustering.py>` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr_advanced_image_processing_auto_examples_plot_spectral_clustering.py: Segmentation with spectral clustering ====================================== This example uses spectral clustering to do segmentation. .. GENERATED FROM PYTHON SOURCE LINES 7-14 .. code-block:: Python import numpy as np import matplotlib.pyplot as plt from sklearn.feature_extraction import image from sklearn.cluster import spectral_clustering .. GENERATED FROM PYTHON SOURCE LINES 15-30 .. code-block:: Python l = 100 x, y = np.indices((l, l)) center1 = (28, 24) center2 = (40, 50) center3 = (67, 58) center4 = (24, 70) radius1, radius2, radius3, radius4 = 16, 14, 15, 14 circle1 = (x - center1[0]) ** 2 + (y - center1[1]) ** 2 < radius1**2 circle2 = (x - center2[0]) ** 2 + (y - center2[1]) ** 2 < radius2**2 circle3 = (x - center3[0]) ** 2 + (y - center3[1]) ** 2 < radius3**2 circle4 = (x - center4[0]) ** 2 + (y - center4[1]) ** 2 < radius4**2 .. GENERATED FROM PYTHON SOURCE LINES 31-32 4 circles .. GENERATED FROM PYTHON SOURCE LINES 32-63 .. code-block:: Python img = circle1 + circle2 + circle3 + circle4 mask = img.astype(bool) img = img.astype(float) rng = np.random.default_rng(27446968) img += 1 + 0.2 * rng.normal(size=img.shape) # Convert the image into a graph with the value of the gradient on the # edges. graph = image.img_to_graph(img, mask=mask) # Take a decreasing function of the gradient: we take it weakly # dependent from the gradient the segmentation is close to a voronoi graph.data = np.exp(-graph.data / graph.data.std()) # Force the solver to be arpack, since amg is numerically # unstable on this example labels = spectral_clustering(graph, n_clusters=4) label_im = -np.ones(mask.shape) label_im[mask] = labels plt.figure(figsize=(6, 3)) plt.subplot(121) plt.imshow(img, cmap="nipy_spectral", interpolation="nearest") plt.axis("off") plt.subplot(122) plt.imshow(label_im, cmap="nipy_spectral", interpolation="nearest") plt.axis("off") plt.subplots_adjust(wspace=0, hspace=0.0, top=0.99, bottom=0.01, left=0.01, right=0.99) plt.show() .. image-sg:: /advanced/image_processing/auto_examples/images/sphx_glr_plot_spectral_clustering_001.png :alt: plot spectral clustering :srcset: /advanced/image_processing/auto_examples/images/sphx_glr_plot_spectral_clustering_001.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 0.244 seconds) .. _sphx_glr_download_advanced_image_processing_auto_examples_plot_spectral_clustering.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_spectral_clustering.ipynb <plot_spectral_clustering.ipynb>` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_spectral_clustering.py <plot_spectral_clustering.py>` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot_spectral_clustering.zip <plot_spectral_clustering.zip>` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_