.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "advanced/mathematical_optimization/auto_examples/plot_constraints.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end <sphx_glr_download_advanced_mathematical_optimization_auto_examples_plot_constraints.py>` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr_advanced_mathematical_optimization_auto_examples_plot_constraints.py: Constraint optimization: visualizing the geometry ================================================== A small figure explaining optimization with constraints .. GENERATED FROM PYTHON SOURCE LINES 7-66 .. rst-class:: sphx-glr-horizontal * .. image-sg:: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_constraints_001.png :alt: plot constraints :srcset: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_constraints_001.png :class: sphx-glr-multi-img * .. image-sg:: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_constraints_002.png :alt: plot constraints :srcset: /advanced/mathematical_optimization/auto_examples/images/sphx_glr_plot_constraints_002.png :class: sphx-glr-multi-img .. code-block:: Python import numpy as np import matplotlib.pyplot as plt import scipy as sp x, y = np.mgrid[-2.9:5.8:0.05, -2.5:5:0.05] # type: ignore[misc] x = x.T y = y.T for i in (1, 2): # Create 2 figure: only the second one will have the optimization # path plt.figure(i, figsize=(3, 2.5)) plt.clf() plt.axes((0, 0, 1, 1)) contours = plt.contour( np.sqrt((x - 3) ** 2 + (y - 2) ** 2), extent=[-3, 6, -2.5, 5], cmap="gnuplot", ) plt.clabel(contours, inline=1, fmt="%1.1f", fontsize=14) plt.plot( [-1.5, -1.5, 1.5, 1.5, -1.5], [-1.5, 1.5, 1.5, -1.5, -1.5], "k", linewidth=2 ) plt.fill_between([-1.5, 1.5], [-1.5, -1.5], [1.5, 1.5], color=".8") plt.axvline(0, color="k") plt.axhline(0, color="k") plt.text(-0.9, 4.4, "$x_2$", size=20) plt.text(5.6, -0.6, "$x_1$", size=20) plt.axis("equal") plt.axis("off") # And now plot the optimization path accumulator = [] def f(x): # Store the list of function calls accumulator.append(x) return np.sqrt((x[0] - 3) ** 2 + (x[1] - 2) ** 2) # We don't use the gradient, as with the gradient, L-BFGS is too fast, # and finds the optimum without showing us a pretty path def f_prime(x): r = np.sqrt((x[0] - 3) ** 2 + (x[0] - 2) ** 2) return np.array(((x[0] - 3) / r, (x[0] - 2) / r)) sp.optimize.minimize( f, np.array([0, 0]), method="L-BFGS-B", bounds=((-1.5, 1.5), (-1.5, 1.5)) ) accumulated = np.array(accumulator) plt.plot(accumulated[:, 0], accumulated[:, 1]) plt.show() .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 0.082 seconds) .. _sphx_glr_download_advanced_mathematical_optimization_auto_examples_plot_constraints.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_constraints.ipynb <plot_constraints.ipynb>` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_constraints.py <plot_constraints.py>` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot_constraints.zip <plot_constraints.zip>` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_