.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "intro/scipy/auto_examples/plot_interpolation.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end <sphx_glr_download_intro_scipy_auto_examples_plot_interpolation.py>` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr_intro_scipy_auto_examples_plot_interpolation.py: ============================ A demo of 1D interpolation ============================ .. GENERATED FROM PYTHON SOURCE LINES 7-55 .. rst-class:: sphx-glr-horizontal * .. image-sg:: /intro/scipy/auto_examples/images/sphx_glr_plot_interpolation_001.png :alt: plot interpolation :srcset: /intro/scipy/auto_examples/images/sphx_glr_plot_interpolation_001.png :class: sphx-glr-multi-img * .. image-sg:: /intro/scipy/auto_examples/images/sphx_glr_plot_interpolation_002.png :alt: plot interpolation :srcset: /intro/scipy/auto_examples/images/sphx_glr_plot_interpolation_002.png :class: sphx-glr-multi-img * .. image-sg:: /intro/scipy/auto_examples/images/sphx_glr_plot_interpolation_003.png :alt: plot interpolation :srcset: /intro/scipy/auto_examples/images/sphx_glr_plot_interpolation_003.png :class: sphx-glr-multi-img .. code-block:: Python # Generate data import numpy as np rng = np.random.default_rng(27446968) measured_time = np.linspace(0, 2 * np.pi, 20) function = np.sin(measured_time) noise = rng.normal(loc=0, scale=0.1, size=20) measurements = function + noise # Smooth the curve and interpolate at new times import scipy as sp smoothing_spline = sp.interpolate.make_smoothing_spline(measured_time, measurements) interpolation_time = np.linspace(0, 2 * np.pi, 200) smooth_results = smoothing_spline(interpolation_time) # Plot the data, the interpolant, and the original function import matplotlib.pyplot as plt plt.figure(figsize=(6, 4)) plt.plot(measured_time, measurements, ".", ms=6, label="measurements") plt.plot(interpolation_time, smooth_results, label="smoothing spline") plt.plot(interpolation_time, np.sin(interpolation_time), "--", label="underlying curve") plt.legend() plt.show() # Fit the data exactly interp_spline = sp.interpolate.make_interp_spline(measured_time, function) interp_results = interp_spline(interpolation_time) # Plot the data, the interpolant, and the original function plt.figure(figsize=(6, 4)) plt.plot(measured_time, function, ".", ms=6, label="measurements") plt.plot(interpolation_time, interp_results, label="interpolating spline") plt.plot(interpolation_time, np.sin(interpolation_time), "--", label="underlying curve") plt.legend() plt.show() # Plot interpolant, its derivative, and its antiderivative plt.figure(figsize=(6, 4)) t = interpolation_time plt.plot(t, interp_spline(t), label="spline") plt.plot(t, interp_spline.derivative()(t), label="derivative") plt.plot(t, interp_spline.antiderivative()(t) - 1, label="antiderivative") plt.legend() plt.show() .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 0.186 seconds) .. _sphx_glr_download_intro_scipy_auto_examples_plot_interpolation.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_interpolation.ipynb <plot_interpolation.ipynb>` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_interpolation.py <plot_interpolation.py>` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot_interpolation.zip <plot_interpolation.zip>` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_