.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "packages/scikit-learn/auto_examples/plot_polynomial_regression.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr_packages_scikit-learn_auto_examples_plot_polynomial_regression.py: Plot fitting a 9th order polynomial ==================================== Fits data generated from a 9th order polynomial with model of 4th order and 9th order polynomials, to demonstrate that often simpler models are to be preferred .. GENERATED FROM PYTHON SOURCE LINES 9-29 .. code-block:: Python import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from sklearn import linear_model # Create color maps for 3-class classification problem, as with iris cmap_light = ListedColormap(["#FFAAAA", "#AAFFAA", "#AAAAFF"]) cmap_bold = ListedColormap(["#FF0000", "#00FF00", "#0000FF"]) rng = np.random.default_rng(27446968) x = 2 * rng.random(100) - 1 f = lambda t: 1.2 * t**2 + 0.1 * t**3 - 0.4 * t**5 - 0.5 * t**9 y = f(x) + 0.4 * rng.normal(size=100) x_test = np.linspace(-1, 1, 100) .. GENERATED FROM PYTHON SOURCE LINES 30-31 The data .. GENERATED FROM PYTHON SOURCE LINES 31-34 .. code-block:: Python plt.figure(figsize=(6, 4)) plt.scatter(x, y, s=4) .. image-sg:: /packages/scikit-learn/auto_examples/images/sphx_glr_plot_polynomial_regression_001.png :alt: plot polynomial regression :srcset: /packages/scikit-learn/auto_examples/images/sphx_glr_plot_polynomial_regression_001.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none .. GENERATED FROM PYTHON SOURCE LINES 35-38 Fitting 4th and 9th order polynomials For this we need to engineer features: the n_th powers of x: .. GENERATED FROM PYTHON SOURCE LINES 38-57 .. code-block:: Python plt.figure(figsize=(6, 4)) plt.scatter(x, y, s=4) X = np.array([x**i for i in range(5)]).T X_test = np.array([x_test**i for i in range(5)]).T regr = linear_model.LinearRegression() regr.fit(X, y) plt.plot(x_test, regr.predict(X_test), label="4th order") X = np.array([x**i for i in range(10)]).T X_test = np.array([x_test**i for i in range(10)]).T regr = linear_model.LinearRegression() regr.fit(X, y) plt.plot(x_test, regr.predict(X_test), label="9th order") plt.legend(loc="best") plt.axis("tight") plt.title("Fitting a 4th and a 9th order polynomial") .. image-sg:: /packages/scikit-learn/auto_examples/images/sphx_glr_plot_polynomial_regression_002.png :alt: Fitting a 4th and a 9th order polynomial :srcset: /packages/scikit-learn/auto_examples/images/sphx_glr_plot_polynomial_regression_002.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none Text(0.5, 1.0, 'Fitting a 4th and a 9th order polynomial') .. GENERATED FROM PYTHON SOURCE LINES 58-59 Ground truth .. GENERATED FROM PYTHON SOURCE LINES 59-66 .. code-block:: Python plt.figure(figsize=(6, 4)) plt.scatter(x, y, s=4) plt.plot(x_test, f(x_test), label="truth") plt.axis("tight") plt.title("Ground truth (9th order polynomial)") plt.show() .. image-sg:: /packages/scikit-learn/auto_examples/images/sphx_glr_plot_polynomial_regression_003.png :alt: Ground truth (9th order polynomial) :srcset: /packages/scikit-learn/auto_examples/images/sphx_glr_plot_polynomial_regression_003.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 0.175 seconds) .. _sphx_glr_download_packages_scikit-learn_auto_examples_plot_polynomial_regression.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_polynomial_regression.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_polynomial_regression.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot_polynomial_regression.zip ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_