2.5.3. Linear System Solvers¶
sparse matrix/eigenvalue problem solvers live in
scipy.sparse.linalg
- the submodules:
dsolve
: direct factorization methods for solving linear systemsisolve
: iterative methods for solving linear systemseigen
: sparse eigenvalue problem solvers
all solvers are accessible from:
>>> import scipy as sp >>> sp.sparse.linalg.__all__ ['ArpackError', 'ArpackNoConvergence', ..., 'use_solver']
2.5.3.1. Sparse Direct Solvers¶
- default solver: SuperLU
included in SciPy
real and complex systems
both single and double precision
- optional: umfpack
real and complex systems
double precision only
recommended for performance
wrappers now live in
scikits.umfpack
check-out the new
scikits.suitesparse
by Nathaniel Smith
Examples¶
import the whole module, and see its docstring:
>>> help(sp.sparse.linalg.spsolve) Help on function spsolve in module scipy.sparse.linalg._dsolve.linsolve: ...
both superlu and umfpack can be used (if the latter is installed) as follows:
prepare a linear system:
>>> import numpy as np >>> mtx = sp.sparse.spdiags([[1, 2, 3, 4, 5], [6, 5, 8, 9, 10]], [0, 1], 5, 5, "csc") >>> mtx.toarray() array([[ 1, 5, 0, 0, 0], [ 0, 2, 8, 0, 0], [ 0, 0, 3, 9, 0], [ 0, 0, 0, 4, 10], [ 0, 0, 0, 0, 5]]) >>> rhs = np.array([1, 2, 3, 4, 5], dtype=np.float32)
solve as single precision real:
>>> mtx1 = mtx.astype(np.float32) >>> x = sp.sparse.linalg.spsolve(mtx1, rhs, use_umfpack=False) >>> print(x) [106. -21. 5.5 -1.5 1. ] >>> print("Error: %s" % (mtx1 * x - rhs)) Error: [0. 0. 0. 0. 0.]
solve as double precision real:
>>> mtx2 = mtx.astype(np.float64) >>> x = sp.sparse.linalg.spsolve(mtx2, rhs, use_umfpack=True) >>> print(x) [106. -21. 5.5 -1.5 1. ] >>> print("Error: %s" % (mtx2 * x - rhs)) Error: [0. 0. 0. 0. 0.]
solve as single precision complex:
>>> mtx1 = mtx.astype(np.complex64) >>> x = sp.sparse.linalg.spsolve(mtx1, rhs, use_umfpack=False) >>> print(x) [106. +0.j -21. +0.j 5.5+0.j -1.5+0.j 1. +0.j] >>> print("Error: %s" % (mtx1 * x - rhs)) Error: [0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j]
solve as double precision complex:
>>> mtx2 = mtx.astype(np.complex128) >>> x = sp.sparse.linalg.spsolve(mtx2, rhs, use_umfpack=True) >>> print(x) [106. +0.j -21. +0.j 5.5+0.j -1.5+0.j 1. +0.j] >>> print("Error: %s" % (mtx2 * x - rhs)) Error: [0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j]
"""
Solve a linear system
=======================
Construct a 1000x1000 lil_array and add some values to it, convert it
to CSR format and solve A x = b for x:and solve a linear system with a
direct solver.
"""
import numpy as np
import scipy as sp
import matplotlib.pyplot as plt
rng = np.random.default_rng(27446968)
mtx = sp.sparse.lil_array((1000, 1000), dtype=np.float64)
mtx[0, :100] = rng.random(100)
mtx[1, 100:200] = mtx[[0], :100]
mtx.setdiag(rng.random(1000))
plt.clf()
plt.spy(mtx, marker=".", markersize=2)
plt.show()
mtx = mtx.tocsr()
rhs = rng.random(1000)
x = sp.sparse.linalg.spsolve(mtx, rhs)
print(f"residual: {np.linalg.norm(mtx @ x - rhs)!r}")
2.5.3.2. Iterative Solvers¶
- the
isolve
module contains the following solvers: bicg
(BIConjugate Gradient)bicgstab
(BIConjugate Gradient STABilized)cg
(Conjugate Gradient) - symmetric positive definite matrices onlycgs
(Conjugate Gradient Squared)gmres
(Generalized Minimal RESidual)minres
(MINimum RESidual)qmr
(Quasi-Minimal Residual)
- the
Common Parameters¶
mandatory:
- A{sparse array/matrix, dense array/matrix, LinearOperator}
The N-by-N matrix of the linear system.
- b{array, matrix}
Right hand side of the linear system. Has shape (N,) or (N,1).
optional:
- x0{array, matrix}
Starting guess for the solution.
- tolfloat
Relative tolerance to achieve before terminating.
- maxiterinteger
Maximum number of iterations. Iteration will stop after maxiter steps even if the specified tolerance has not been achieved.
- M{sparse array/matrix, dense array/matrix, LinearOperator}
Preconditioner for A. The preconditioner should approximate the inverse of A. Effective preconditioning dramatically improves the rate of convergence, which implies that fewer iterations are needed to reach a given error tolerance.
- callbackfunction
User-supplied function to call after each iteration. It is called as callback(xk), where xk is the current solution vector.
LinearOperator Class¶
common interface for performing matrix vector products
useful abstraction that enables using dense and sparse matrices within the solvers, as well as matrix-free solutions
has shape and matvec() (+ some optional parameters)
example:
>>> import numpy as np
>>> import scipy as sp
>>> def mv(v):
... return np.array([2 * v[0], 3 * v[1]])
...
>>> A = sp.sparse.linalg.LinearOperator((2, 2), matvec=mv)
>>> A
<2x2 _CustomLinearOperator with dtype=float64>
>>> A.matvec(np.ones(2))
array([2., 3.])
>>> A * np.ones(2)
array([2., 3.])
A Few Notes on Preconditioning¶
problem specific
often hard to develop
- if not sure, try ILU
available in
scipy.sparse.linalg
asspilu()
2.5.3.3. Eigenvalue Problem Solvers¶
The eigen
module¶
arpack
* a collection of Fortran77 subroutines designed to solve large scale eigenvalue problemslobpcg
(Locally Optimal Block Preconditioned Conjugate Gradient Method) * works very well in combination with PyAMG * example by Nathan Bell:""" Compute eigenvectors and eigenvalues using a preconditioned eigensolver ======================================================================= In this example Smoothed Aggregation (SA) is used to precondition the LOBPCG eigensolver on a two-dimensional Poisson problem with Dirichlet boundary conditions. """ import numpy as np import scipy as sp import matplotlib.pyplot as plt from pyamg import smoothed_aggregation_solver from pyamg.gallery import poisson N = 100 K = 9 A = poisson((N, N), format="csr") # create the AMG hierarchy ml = smoothed_aggregation_solver(A) # initial approximation to the K eigenvectors X = np.random.random((A.shape[0], K)) # preconditioner based on ml M = ml.aspreconditioner() # compute eigenvalues and eigenvectors with LOBPCG W, V = sp.sparse.linalg.lobpcg(A, X, M=M, tol=1e-8, largest=False) # plot the eigenvectors plt.figure(figsize=(9, 9)) for i in range(K): plt.subplot(3, 3, i + 1) plt.title("Eigenvector %d" % i) plt.pcolor(V[:, i].reshape(N, N)) plt.axis("equal") plt.axis("off") plt.show()
example by Nils Wagner:
output:
$ python examples/lobpcg_sakurai.py Results by LOBPCG for n=2500 [ 0.06250083 0.06250028 0.06250007] Exact eigenvalues [ 0.06250005 0.0625002 0.06250044] Elapsed time 7.01