1.5.12.8. Curve fittingΒΆ

Demos a simple curve fitting

First generate some data

import numpy as np
# Seed the random number generator for reproducibility
rng = np.random.default_rng(27446968)
x_data = np.linspace(-5, 5, num=50)
noise = 0.01 * np.cos(100 * x_data)
a, b = 2.9, 1.5
y_data = a * np.cos(b * x_data) + noise
# And plot it
import matplotlib.pyplot as plt
plt.figure(figsize=(6, 4))
plt.scatter(x_data, y_data)
plot curve fit
<matplotlib.collections.PathCollection object at 0x7f791ee56960>

Now fit a simple sine function to the data

import scipy as sp
def test_func(x, a, b, c):
return a * np.sin(b * x + c)
params, params_covariance = sp.optimize.curve_fit(
test_func, x_data, y_data, p0=[2, 1, 3]
)
print(params)
[2.900026   1.50012043 1.57079633]

And plot the resulting curve on the data

plt.figure(figsize=(6, 4))
plt.scatter(x_data, y_data, label="Data")
plt.plot(x_data, test_func(x_data, *params), label="Fitted function")
plt.legend(loc="best")
plt.show()
plot curve fit

Total running time of the script: (0 minutes 0.109 seconds)

Gallery generated by Sphinx-Gallery