3.4.8.13. Simple visualization and classification of the digits dataset

Plot the first few samples of the digits dataset and a 2D representation built using PCA, then do a simple classification

from sklearn.datasets import load_digits
digits = load_digits()

Plot the data: images of digits

Each data in a 8x8 image

import matplotlib.pyplot as plt
fig = plt.figure(figsize=(6, 6)) # figure size in inches
fig.subplots_adjust(left=0, right=1, bottom=0, top=1, hspace=0.05, wspace=0.05)
for i in range(64):
ax = fig.add_subplot(8, 8, i + 1, xticks=[], yticks=[])
ax.imshow(digits.images[i], cmap="binary", interpolation="nearest")
# label the image with the target value
ax.text(0, 7, str(digits.target[i]))
plot digits simple classif

Plot a projection on the 2 first principal axis

plt.figure()
from sklearn.decomposition import PCA
pca = PCA(n_components=2)
proj = pca.fit_transform(digits.data)
plt.scatter(proj[:, 0], proj[:, 1], c=digits.target, cmap="Paired")
plt.colorbar()
plot digits simple classif
<matplotlib.colorbar.Colorbar object at 0x7f22b60004d0>

Classify with Gaussian naive Bayes

from sklearn.naive_bayes import GaussianNB
from sklearn.model_selection import train_test_split
# split the data into training and validation sets
X_train, X_test, y_train, y_test = train_test_split(digits.data, digits.target)
# train the model
clf = GaussianNB()
clf.fit(X_train, y_train)
# use the model to predict the labels of the test data
predicted = clf.predict(X_test)
expected = y_test
# Plot the prediction
fig = plt.figure(figsize=(6, 6)) # figure size in inches
fig.subplots_adjust(left=0, right=1, bottom=0, top=1, hspace=0.05, wspace=0.05)
# plot the digits: each image is 8x8 pixels
for i in range(64):
ax = fig.add_subplot(8, 8, i + 1, xticks=[], yticks=[])
ax.imshow(X_test.reshape(-1, 8, 8)[i], cmap="binary", interpolation="nearest")
# label the image with the target value
if predicted[i] == expected[i]:
ax.text(0, 7, str(predicted[i]), color="green")
else:
ax.text(0, 7, str(predicted[i]), color="red")
plot digits simple classif

Quantify the performance

First print the number of correct matches

matches = predicted == expected
print(matches.sum())
395

The total number of data points

print(len(matches))
450

And now, the ration of correct predictions

matches.sum() / float(len(matches))
np.float64(0.8777777777777778)

Print the classification report

from sklearn import metrics
print(metrics.classification_report(expected, predicted))
              precision    recall  f1-score   support
0 0.97 0.95 0.96 37
1 0.83 0.85 0.84 41
2 0.89 0.84 0.86 49
3 0.93 0.83 0.88 47
4 0.93 0.90 0.92 42
5 0.89 0.95 0.92 42
6 0.98 0.97 0.97 60
7 0.81 0.98 0.88 47
8 0.65 0.87 0.75 39
9 0.97 0.63 0.76 46
accuracy 0.88 450
macro avg 0.89 0.88 0.87 450
weighted avg 0.89 0.88 0.88 450

Print the confusion matrix

[[35  0  0  0  1  0  0  1  0  0]
[ 0 35 0 0 0 0 1 1 4 0]
[ 0 1 41 0 0 0 0 0 7 0]
[ 0 0 2 39 0 1 0 2 2 1]
[ 0 1 0 0 38 0 0 2 1 0]
[ 0 0 0 0 1 40 0 1 0 0]
[ 0 0 1 0 1 0 58 0 0 0]
[ 0 0 0 0 0 1 0 46 0 0]
[ 0 2 0 1 0 1 0 1 34 0]
[ 1 3 2 2 0 2 0 3 4 29]]

Total running time of the script: (0 minutes 1.736 seconds)

Gallery generated by Sphinx-Gallery