3. Packages and applications¶
This part of the Scientific Python Lectures is dedicated to various scientific packages useful for extended needs.
- 3.1. Statistics in Python
- 3.1.1. Data representation and interaction
- 3.1.2. Hypothesis testing: comparing two groups
- 3.1.3. Linear models, multiple factors, and analysis of variance
- 3.1.4. More visualization: seaborn for statistical exploration
- 3.1.5. Testing for interactions
- 3.1.6. Full code for the figures
- 3.1.7. Solutions to this chapter’s exercises
- 3.2. Sympy : Symbolic Mathematics in Python
- 3.3.
scikit-image
: image processing- 3.3.1. Introduction and concepts
- 3.3.2. Importing
- 3.3.3. Example data
- 3.3.4. Input/output, data types and colorspaces
- 3.3.5. Image preprocessing / enhancement
- 3.3.6. Image segmentation
- 3.3.7. Measuring regions’ properties
- 3.3.8. Data visualization and interaction
- 3.3.9. Feature extraction for computer vision
- 3.3.10. Full code examples
- 3.3.11. Examples for the scikit-image chapter
- 3.4. scikit-learn: machine learning in Python
- 3.4.1. Introduction: problem settings
- 3.4.2. Basic principles of machine learning with scikit-learn
- 3.4.3. Supervised Learning: Classification of Handwritten Digits
- 3.4.4. Supervised Learning: Regression of Housing Data
- 3.4.5. Measuring prediction performance
- 3.4.6. Unsupervised Learning: Dimensionality Reduction and Visualization
- 3.4.7. Parameter selection, Validation, and Testing
- 3.4.8. Examples for the scikit-learn chapter