3.4.8.7. Plot variance and regularization in linear modelsΒΆ

import numpy as np
# Smaller figures
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (3, 2)

We consider the situation where we have only 2 data point

X = np.c_[0.5, 1].T
y = [0.5, 1]
X_test = np.c_[0, 2].T

Without noise, as linear regression fits the data perfectly

from sklearn import linear_model
regr = linear_model.LinearRegression()
regr.fit(X, y)
plt.plot(X, y, "o")
plt.plot(X_test, regr.predict(X_test))
plot variance linear regr
[<matplotlib.lines.Line2D object at 0x7fe9ca800c50>]

In real life situation, we have noise (e.g. measurement noise) in our data:

rng = np.random.default_rng(27446968)
for _ in range(6):
noisy_X = X + np.random.normal(loc=0, scale=0.1, size=X.shape)
plt.plot(noisy_X, y, "o")
regr.fit(noisy_X, y)
plt.plot(X_test, regr.predict(X_test))
plot variance linear regr

As we can see, our linear model captures and amplifies the noise in the data. It displays a lot of variance.

We can use another linear estimator that uses regularization, the Ridge estimator. This estimator regularizes the coefficients by shrinking them to zero, under the assumption that very high correlations are often spurious. The alpha parameter controls the amount of shrinkage used.

regr = linear_model.Ridge(alpha=0.1)
np.random.seed(0)
for _ in range(6):
noisy_X = X + np.random.normal(loc=0, scale=0.1, size=X.shape)
plt.plot(noisy_X, y, "o")
regr.fit(noisy_X, y)
plt.plot(X_test, regr.predict(X_test))
plt.show()
plot variance linear regr

Total running time of the script: (0 minutes 0.115 seconds)

Gallery generated by Sphinx-Gallery