2.7.4.6. Optimization with constraints

An example showing how to do optimization with general constraints using SLSQP and cobyla.

plot non bounds constraints
import numpy as np
import matplotlib.pyplot as plt
import scipy as sp
x, y = np.mgrid[-2.03:4.2:0.04, -1.6:3.2:0.04]
x = x.T
y = y.T
plt.figure(1, figsize=(3, 2.5))
plt.clf()
plt.axes([0, 0, 1, 1])
contours = plt.contour(
np.sqrt((x - 3) ** 2 + (y - 2) ** 2),
extent=[-2.03, 4.2, -1.6, 3.2],
cmap=plt.cm.gnuplot,
)
plt.clabel(contours, inline=1, fmt="%1.1f", fontsize=14)
plt.plot([-1.5, 0, 1.5, 0, -1.5], [0, 1.5, 0, -1.5, 0], "k", linewidth=2)
plt.fill_between([-1.5, 0, 1.5], [0, -1.5, 0], [0, 1.5, 0], color=".8")
plt.axvline(0, color="k")
plt.axhline(0, color="k")
plt.text(-0.9, 2.8, "$x_2$", size=20)
plt.text(3.6, -0.6, "$x_1$", size=20)
plt.axis("tight")
plt.axis("off")
# And now plot the optimization path
accumulator = []
def f(x):
# Store the list of function calls
accumulator.append(x)
return np.sqrt((x[0] - 3) ** 2 + (x[1] - 2) ** 2)
def constraint(x):
return np.atleast_1d(1.5 - np.sum(np.abs(x)))
sp.optimize.minimize(
f, np.array([0, 0]), method="SLSQP", constraints={"fun": constraint, "type": "ineq"}
)
accumulated = np.array(accumulator)
plt.plot(accumulated[:, 0], accumulated[:, 1])
plt.show()

Total running time of the script: (0 minutes 0.046 seconds)

Gallery generated by Sphinx-Gallery