Note
Go to the end to download the full example code.
3.4.8.2. Measuring Decision Tree performanceΒΆ
Demonstrates overfit when testing on train set.
Get the data
from sklearn.datasets import fetch_california_housing
data = fetch_california_housing(as_frame=True)
Train and test a model
from sklearn.tree import DecisionTreeRegressor
clf = DecisionTreeRegressor().fit(data.data, data.target)
predicted = clf.predict(data.data)
expected = data.target
Plot predicted as a function of expected
import matplotlib.pyplot as plt
plt.figure(figsize=(4, 3))
plt.scatter(expected, predicted)
plt.plot([0, 5], [0, 5], "--k")
plt.axis("tight")
plt.xlabel("True price ($100k)")
plt.ylabel("Predicted price ($100k)")
plt.tight_layout()
Pretty much no errors!
This is too good to be true: we are testing the model on the train data, which is not a measure of generalization.
The results are not valid
Total running time of the script: (0 minutes 1.779 seconds)