3.4.8.1. Demo PCA in 2D

Load the iris data

from sklearn import datasets
iris = datasets.load_iris()
X = iris.data
y = iris.target

Fit a PCA

from sklearn.decomposition import PCA
pca = PCA(n_components=2, whiten=True)
pca.fit(X)
PCA(n_components=2, whiten=True)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.


Project the data in 2D

Visualize the data

target_ids = range(len(iris.target_names))
import matplotlib.pyplot as plt
plt.figure(figsize=(6, 5))
for i, c, label in zip(target_ids, "rgbcmykw", iris.target_names, strict=False):
plt.scatter(X_pca[y == i, 0], X_pca[y == i, 1], c=c, label=label)
plt.legend()
plt.show()
plot pca

Total running time of the script: (0 minutes 0.101 seconds)

Gallery generated by Sphinx-Gallery