3.1.6.4. Simple Regression

Fit a simple linear regression using ‘statsmodels’, compute corresponding p-values.

# Original author: Thomas Haslwanter
import numpy as np
import matplotlib.pyplot as plt
import pandas
# For statistics. Requires statsmodels 5.0 or more
from statsmodels.formula.api import ols
# Analysis of Variance (ANOVA) on linear models
from statsmodels.stats.anova import anova_lm

Generate and show the data

x = np.linspace(-5, 5, 20)
# To get reproducible values, provide a seed value
rng = np.random.default_rng(27446968)
y = -5 + 3 * x + 4 * np.random.normal(size=x.shape)
# Plot the data
plt.figure(figsize=(5, 4))
plt.plot(x, y, "o")
plot regression
[<matplotlib.lines.Line2D object at 0x7fe9cafbb2f0>]

Multilinear regression model, calculating fit, P-values, confidence intervals etc.

# Convert the data into a Pandas DataFrame to use the formulas framework
# in statsmodels
data = pandas.DataFrame({"x": x, "y": y})
# Fit the model
model = ols("y ~ x", data).fit()
# Print the summary
print(model.summary())
# Perform analysis of variance on fitted linear model
anova_results = anova_lm(model)
print("\nANOVA results")
print(anova_results)
                            OLS Regression Results
==============================================================================
Dep. Variable: y R-squared: 0.845
Model: OLS Adj. R-squared: 0.836
Method: Least Squares F-statistic: 97.76
Date: Tue, 17 Dec 2024 Prob (F-statistic): 1.06e-08
Time: 02:24:00 Log-Likelihood: -53.560
No. Observations: 20 AIC: 111.1
Df Residuals: 18 BIC: 113.1
Df Model: 1
Covariance Type: nonrobust
==============================================================================
coef std err t P>|t| [0.025 0.975]
------------------------------------------------------------------------------
Intercept -4.1877 0.830 -5.044 0.000 -5.932 -2.444
x 2.7046 0.274 9.887 0.000 2.130 3.279
==============================================================================
Omnibus: 1.871 Durbin-Watson: 1.930
Prob(Omnibus): 0.392 Jarque-Bera (JB): 0.597
Skew: 0.337 Prob(JB): 0.742
Kurtosis: 3.512 Cond. No. 3.03
==============================================================================
Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
ANOVA results
df sum_sq mean_sq F PR(>F)
x 1.0 1347.476043 1347.476043 97.760281 1.062847e-08
Residual 18.0 248.102486 13.783471 NaN NaN

Plot the fitted model

# Retrieve the parameter estimates
offset, coef = model._results.params
plt.plot(x, x * coef + offset)
plt.xlabel("x")
plt.ylabel("y")
plt.show()
plot regression

Total running time of the script: (0 minutes 0.107 seconds)

Gallery generated by Sphinx-Gallery