Note
Go to the end to download the full example code.
2.6.8.16. Denoising an image with the median filterΒΆ
This example shows the original image, the noisy image, the denoised one (with the median filter) and the difference between the two.
import numpy as np
import scipy as sp
import matplotlib.pyplot as plt
rng = np.random.default_rng(27446968)
im = np.zeros((20, 20))
im[5:-5, 5:-5] = 1
im = sp.ndimage.distance_transform_bf(im)
im_noise = im + 0.2 * rng.normal(size=im.shape)
im_med = sp.ndimage.median_filter(im_noise, 3)
plt.figure(figsize=(16, 5))
plt.subplot(141)
plt.imshow(im, interpolation="nearest")
plt.axis("off")
plt.title("Original image", fontsize=20)
plt.subplot(142)
plt.imshow(im_noise, interpolation="nearest", vmin=0, vmax=5)
plt.axis("off")
plt.title("Noisy image", fontsize=20)
plt.subplot(143)
plt.imshow(im_med, interpolation="nearest", vmin=0, vmax=5)
plt.axis("off")
plt.title("Median filter", fontsize=20)
plt.subplot(144)
plt.imshow(np.abs(im - im_med), cmap="hot", interpolation="nearest")
plt.axis("off")
plt.title("Error", fontsize=20)
plt.subplots_adjust(wspace=0.02, hspace=0.02, top=0.9, bottom=0, left=0, right=1)
plt.show()
Total running time of the script: (0 minutes 0.116 seconds)