Note
Go to the end to download the full example code.
2.6.8.15. Find the bounding box of an objectΒΆ
This example shows how to extract the bounding box of the largest object
import numpy as np
import scipy as sp
import matplotlib.pyplot as plt
rng = np.random.default_rng(27446968)
n = 10
l = 256
im = np.zeros((l, l))
points = l * rng.random((2, n**2))
im[(points[0]).astype(int), (points[1]).astype(int)] = 1
im = sp.ndimage.gaussian_filter(im, sigma=l / (4.0 * n))
mask = im > im.mean()
label_im, nb_labels = sp.ndimage.label(mask)
# Find the largest connected component
sizes = sp.ndimage.sum(mask, label_im, range(nb_labels + 1))
mask_size = sizes < 1000
remove_pixel = mask_size[label_im]
label_im[remove_pixel] = 0
labels = np.unique(label_im)
label_im = np.searchsorted(labels, label_im)
# Now that we have only one connected component, extract it's bounding box
slice_x, slice_y = sp.ndimage.find_objects(label_im == 4)[0]
roi = im[slice_x, slice_y]
plt.figure(figsize=(4, 2))
plt.axes((0, 0, 1, 1))
plt.imshow(roi)
plt.axis("off")
plt.show()
Total running time of the script: (0 minutes 0.018 seconds)