1.3.3. More elaborate arrays¶
1.3.3.1. More data types¶
Casting¶
“Bigger” type wins in mixed-type operations:
>>> np.array([1, 2, 3]) + 1.5
array([2.5, 3.5, 4.5])
Assignment never changes the type!
>>> a = np.array([1, 2, 3])
>>> a.dtype
dtype('int64')
>>> a[0] = 1.9 # <-- float is truncated to integer
>>> a
array([1, 2, 3])
Forced casts:
>>> a = np.array([1.7, 1.2, 1.6])
>>> b = a.astype(int) # <-- truncates to integer
>>> b
array([1, 1, 1])
Rounding:
>>> a = np.array([1.2, 1.5, 1.6, 2.5, 3.5, 4.5])
>>> b = np.around(a)
>>> b # still floating-point
array([1., 2., 2., 2., 4., 4.])
>>> c = np.around(a).astype(int)
>>> c
array([1, 2, 2, 2, 4, 4])
Different data type sizes¶
Integers (signed):
|
8 bits |
|
16 bits |
|
32 bits (same as |
|
64 bits (same as |
>>> np.array([1], dtype=int).dtype
dtype('int64')
>>> np.iinfo(np.int32).max, 2**31 - 1
(2147483647, 2147483647)
Unsigned integers:
|
8 bits |
|
16 bits |
|
32 bits |
|
64 bits |
>>> np.iinfo(np.uint32).max, 2**32 - 1
(4294967295, 4294967295)
Floating-point numbers:
|
16 bits |
|
32 bits |
|
64 bits (same as |
|
96 bits, platform-dependent (same as |
|
128 bits, platform-dependent (same as |
>>> np.finfo(np.float32).eps
np.float32(1.1920929e-07)
>>> np.finfo(np.float64).eps
np.float64(2.220446049250313e-16)
>>> np.float32(1e-8) + np.float32(1) == 1
np.True_
>>> np.float64(1e-8) + np.float64(1) == 1
np.False_
Complex floating-point numbers:
|
two 32-bit floats |
|
two 64-bit floats |
|
two 96-bit floats, platform-dependent |
|
two 128-bit floats, platform-dependent |
1.3.3.2. Structured data types¶
|
(4-character string) |
|
(float) |
|
(float) |
>>> samples = np.zeros((6,), dtype=[('sensor_code', 'S4'),
... ('position', float), ('value', float)])
>>> samples.ndim
1
>>> samples.shape
(6,)
>>> samples.dtype.names
('sensor_code', 'position', 'value')
>>> samples[:] = [('ALFA', 1, 0.37), ('BETA', 1, 0.11), ('TAU', 1, 0.13),
... ('ALFA', 1.5, 0.37), ('ALFA', 3, 0.11), ('TAU', 1.2, 0.13)]
>>> samples
array([(b'ALFA', 1. , 0.37), (b'BETA', 1. , 0.11), (b'TAU', 1. , 0.13),
(b'ALFA', 1.5, 0.37), (b'ALFA', 3. , 0.11), (b'TAU', 1.2, 0.13)],
dtype=[('sensor_code', 'S4'), ('position', '<f8'), ('value', '<f8')])
Field access works by indexing with field names:
>>> samples['sensor_code']
array([b'ALFA', b'BETA', b'TAU', b'ALFA', b'ALFA', b'TAU'], dtype='|S4')
>>> samples['value']
array([0.37, 0.11, 0.13, 0.37, 0.11, 0.13])
>>> samples[0]
np.void((b'ALFA', 1.0, 0.37), dtype=[('sensor_code', 'S4'), ('position', '<f8'), ('value', '<f8')])
>>> samples[0]['sensor_code'] = 'TAU'
>>> samples[0]
np.void((b'TAU', 1.0, 0.37), dtype=[('sensor_code', 'S4'), ('position', '<f8'), ('value', '<f8')])
Multiple fields at once:
>>> samples[['position', 'value']]
array([(1. , 0.37), (1. , 0.11), (1. , 0.13), (1.5, 0.37),
(3. , 0.11), (1.2, 0.13)],
dtype={'names': ['position', 'value'], 'formats': ['<f8', '<f8'], 'offsets': [4, 12], 'itemsize': 20})
Fancy indexing works, as usual:
>>> samples[samples['sensor_code'] == b'ALFA']
array([(b'ALFA', 1.5, 0.37), (b'ALFA', 3. , 0.11)],
dtype=[('sensor_code', 'S4'), ('position', '<f8'), ('value', '<f8')])
1.3.3.3. maskedarray
: dealing with (propagation of) missing data¶
For floats one could use NaN’s, but masks work for all types:
>>> x = np.ma.array([1, 2, 3, 4], mask=[0, 1, 0, 1]) >>> x masked_array(data=[1, --, 3, --], mask=[False, True, False, True], fill_value=999999) >>> y = np.ma.array([1, 2, 3, 4], mask=[0, 1, 1, 1]) >>> x + y masked_array(data=[2, --, --, --], mask=[False, True, True, True], fill_value=999999)
Masking versions of common functions:
>>> np.ma.sqrt([1, -1, 2, -2]) masked_array(data=[1.0, --, 1.41421356237... --], mask=[False, True, False, True], fill_value=1e+20)
Note
There are other useful array siblings
While it is off topic in a chapter on NumPy, let’s take a moment to recall good coding practice, which really do pay off in the long run: