1.3.2. Numerical operations on arrays

1.3.2.1. Elementwise operations

Basic operations

With scalars:

>>> a = np.array([1, 2, 3, 4])
>>> a + 1
array([2, 3, 4, 5])
>>> 2**a
array([ 2, 4, 8, 16])

All arithmetic operates elementwise:

>>> b = np.ones(4) + 1
>>> a - b
array([-1., 0., 1., 2.])
>>> a * b
array([2., 4., 6., 8.])
>>> j = np.arange(5)
>>> 2**(j + 1) - j
array([ 2, 3, 6, 13, 28])

These operations are of course much faster than if you did them in pure python:

>>> a = np.arange(10000)
>>> %timeit a + 1
10000 loops, best of 3: 24.3 us per loop
>>> l = range(10000)
>>> %timeit [i+1 for i in l]
1000 loops, best of 3: 861 us per loop

Warning

Array multiplication is not matrix multiplication:

>>> c = np.ones((3, 3))
>>> c * c # NOT matrix multiplication!
array([[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]])

Note

Matrix multiplication:

>>> c @ c
array([[3., 3., 3.],
[3., 3., 3.],
[3., 3., 3.]])

Other operations

Comparisons:

>>> a = np.array([1, 2, 3, 4])
>>> b = np.array([4, 2, 2, 4])
>>> a == b
array([False, True, False, True])
>>> a > b
array([False, False, True, False])

Tip

Array-wise comparisons:

>>> a = np.array([1, 2, 3, 4])
>>> b = np.array([4, 2, 2, 4])
>>> c = np.array([1, 2, 3, 4])
>>> np.array_equal(a, b)
False
>>> np.array_equal(a, c)
True

Logical operations:

>>> a = np.array([1, 1, 0, 0], dtype=bool)
>>> b = np.array([1, 0, 1, 0], dtype=bool)
>>> np.logical_or(a, b)
array([ True, True, True, False])
>>> np.logical_and(a, b)
array([ True, False, False, False])

Transcendental functions:

>>> a = np.arange(5)
>>> np.sin(a)
array([ 0. , 0.84147098, 0.90929743, 0.14112001, -0.7568025 ])
>>> np.exp(a)
array([ 1. , 2.71828183, 7.3890561 , 20.08553692, 54.59815003])
>>> np.log(np.exp(a))
array([0., 1., 2., 3., 4.])

Shape mismatches

>>> a = np.arange(4)
>>> a + np.array([1, 2])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: operands could not be broadcast together with shapes (4,) (2,)

Broadcasting? We’ll return to that later.

Transposition:

>>> a = np.triu(np.ones((3, 3)), 1)   # see help(np.triu)
>>> a
array([[0., 1., 1.],
[0., 0., 1.],
[0., 0., 0.]])
>>> a.T
array([[0., 0., 0.],
[1., 0., 0.],
[1., 1., 0.]])

Note

The transposition is a view

The transpose returns a view of the original array:

>>> a = np.arange(9).reshape(3, 3)
>>> a.T[0, 2] = 999
>>> a.T
array([[ 0, 3, 999],
[ 1, 4, 7],
[ 2, 5, 8]])
>>> a
array([[ 0, 1, 2],
[ 3, 4, 5],
[999, 7, 8]])

Note

Linear algebra

The sub-module numpy.linalg implements basic linear algebra, such as solving linear systems, singular value decomposition, etc. However, it is not guaranteed to be compiled using efficient routines, and thus we recommend the use of scipy.linalg, as detailed in section Linear algebra operations: scipy.linalg

1.3.2.2. Basic reductions

Computing sums

>>> x = np.array([1, 2, 3, 4])
>>> np.sum(x)
10
>>> x.sum()
10
../../_images/reductions.png

Sum by rows and by columns:

>>> x = np.array([[1, 1], [2, 2]])
>>> x
array([[1, 1],
[2, 2]])
>>> x.sum(axis=0) # columns (first dimension)
array([3, 3])
>>> x[:, 0].sum(), x[:, 1].sum()
(3, 3)
>>> x.sum(axis=1) # rows (second dimension)
array([2, 4])
>>> x[0, :].sum(), x[1, :].sum()
(2, 4)

Tip

Same idea in higher dimensions:

>>> rng = np.random.default_rng(27446968)
>>> x = rng.random((2, 2, 2))
>>> x.sum(axis=2)[0, 1]
0.73415...
>>> x[0, 1, :].sum()
0.73415...

Other reductions

— works the same way (and take axis=)

Extrema:

>>> x = np.array([1, 3, 2])
>>> x.min()
1
>>> x.max()
3
>>> x.argmin() # index of minimum
0
>>> x.argmax() # index of maximum
1

Logical operations:

>>> np.all([True, True, False])
False
>>> np.any([True, True, False])
True

Note

Can be used for array comparisons:

>>> a = np.zeros((100, 100))
>>> np.any(a != 0)
False
>>> np.all(a == a)
True
>>> a = np.array([1, 2, 3, 2])
>>> b = np.array([2, 2, 3, 2])
>>> c = np.array([6, 4, 4, 5])
>>> ((a <= b) & (b <= c)).all()
True

Statistics:

>>> x = np.array([1, 2, 3, 1])
>>> y = np.array([[1, 2, 3], [5, 6, 1]])
>>> x.mean()
1.75
>>> np.median(x)
1.5
>>> np.median(y, axis=-1) # last axis
array([2., 5.])
>>> x.std() # full population standard dev.
0.82915619758884995

… and many more (best to learn as you go).

1.3.2.3. Broadcasting

  • Basic operations on numpy arrays (addition, etc.) are elementwise

  • This works on arrays of the same size.

    Nevertheless, It’s also possible to do operations on arrays of different
    sizes if NumPy can transform these arrays so that they all have
    the same size: this conversion is called broadcasting.

The image below gives an example of broadcasting:

../../_images/numpy_broadcasting.png

Let’s verify:

>>> a = np.tile(np.arange(0, 40, 10), (3, 1)).T
>>> a
array([[ 0, 0, 0],
[10, 10, 10],
[20, 20, 20],
[30, 30, 30]])
>>> b = np.array([0, 1, 2])
>>> a + b
array([[ 0, 1, 2],
[10, 11, 12],
[20, 21, 22],
[30, 31, 32]])

We have already used broadcasting without knowing it!:

>>> a = np.ones((4, 5))
>>> a[0] = 2 # we assign an array of dimension 0 to an array of dimension 1
>>> a
array([[2., 2., 2., 2., 2.],
[1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1.]])

A useful trick:

>>> a = np.arange(0, 40, 10)
>>> a.shape
(4,)
>>> a = a[:, np.newaxis] # adds a new axis -> 2D array
>>> a.shape
(4, 1)
>>> a
array([[ 0],
[10],
[20],
[30]])
>>> a + b
array([[ 0, 1, 2],
[10, 11, 12],
[20, 21, 22],
[30, 31, 32]])

Tip

Broadcasting seems a bit magical, but it is actually quite natural to use it when we want to solve a problem whose output data is an array with more dimensions than input data.

A lot of grid-based or network-based problems can also use broadcasting. For instance, if we want to compute the distance from the origin of points on a 5x5 grid, we can do

>>> x, y = np.arange(5), np.arange(5)[:, np.newaxis]
>>> distance = np.sqrt(x ** 2 + y ** 2)
>>> distance
array([[0. , 1. , 2. , 3. , 4. ],
[1. , 1.41421356, 2.23606798, 3.16227766, 4.12310563],
[2. , 2.23606798, 2.82842712, 3.60555128, 4.47213595],
[3. , 3.16227766, 3.60555128, 4.24264069, 5. ],
[4. , 4.12310563, 4.47213595, 5. , 5.65685425]])

Or in color:

>>> plt.pcolor(distance)
<matplotlib.collections.PolyQuadMesh object at ...>
>>> plt.colorbar()
<matplotlib.colorbar.Colorbar object at ...>
../../_images/sphx_glr_plot_distances_001.png

Remark : the numpy.ogrid() function allows to directly create vectors x and y of the previous example, with two “significant dimensions”:

>>> x, y = np.ogrid[0:5, 0:5]
>>> x, y
(array([[0],
[1],
[2],
[3],
[4]]), array([[0, 1, 2, 3, 4]]))
>>> x.shape, y.shape
((5, 1), (1, 5))
>>> distance = np.sqrt(x ** 2 + y ** 2)

Tip

So, np.ogrid is very useful as soon as we have to handle computations on a grid. On the other hand, np.mgrid directly provides matrices full of indices for cases where we can’t (or don’t want to) benefit from broadcasting:

>>> x, y = np.mgrid[0:4, 0:4]
>>> x
array([[0, 0, 0, 0],
[1, 1, 1, 1],
[2, 2, 2, 2],
[3, 3, 3, 3]])
>>> y
array([[0, 1, 2, 3],
[0, 1, 2, 3],
[0, 1, 2, 3],
[0, 1, 2, 3]])

See also

Broadcasting: discussion of broadcasting in the Advanced NumPy chapter.

1.3.2.4. Array shape manipulation

Flattening

>>> a = np.array([[1, 2, 3], [4, 5, 6]])
>>> a.ravel()
array([1, 2, 3, 4, 5, 6])
>>> a.T
array([[1, 4],
[2, 5],
[3, 6]])
>>> a.T.ravel()
array([1, 4, 2, 5, 3, 6])

Higher dimensions: last dimensions ravel out “first”.

Reshaping

The inverse operation to flattening:

>>> a.shape
(2, 3)
>>> b = a.ravel()
>>> b = b.reshape((2, 3))
>>> b
array([[1, 2, 3],
[4, 5, 6]])

Or,

>>> a.reshape((2, -1))    # unspecified (-1) value is inferred
array([[1, 2, 3],
[4, 5, 6]])

Warning

ndarray.reshape may return a view (cf help(np.reshape))), or copy

Tip

>>> b[0, 0] = 99
>>> a
array([[99, 2, 3],
[ 4, 5, 6]])

Beware: reshape may also return a copy!:

>>> a = np.zeros((3, 2))
>>> b = a.T.reshape(3*2)
>>> b[0] = 9
>>> a
array([[0., 0.],
[0., 0.],
[0., 0.]])

To understand this you need to learn more about the memory layout of a NumPy array.

Adding a dimension

Indexing with the np.newaxis object allows us to add an axis to an array (you have seen this already above in the broadcasting section):

>>> z = np.array([1, 2, 3])
>>> z
array([1, 2, 3])
>>> z[:, np.newaxis]
array([[1],
[2],
[3]])
>>> z[np.newaxis, :]
array([[1, 2, 3]])

Dimension shuffling

>>> a = np.arange(4*3*2).reshape(4, 3, 2)
>>> a.shape
(4, 3, 2)
>>> a[0, 2, 1]
5
>>> b = a.transpose(1, 2, 0)
>>> b.shape
(3, 2, 4)
>>> b[2, 1, 0]
5

Also creates a view:

>>> b[2, 1, 0] = -1
>>> a[0, 2, 1]
-1

Resizing

Size of an array can be changed with ndarray.resize:

>>> a = np.arange(4)
>>> a.resize((8,))
>>> a
array([0, 1, 2, 3, 0, 0, 0, 0])

However, it must not be referred to somewhere else:

>>> b = a
>>> a.resize((4,))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: cannot resize an array that references or is referenced
by another array in this way.
Use the np.resize function or refcheck=False

1.3.2.5. Sorting data

Sorting along an axis:

>>> a = np.array([[4, 3, 5], [1, 2, 1]])
>>> b = np.sort(a, axis=1)
>>> b
array([[3, 4, 5],
[1, 1, 2]])

Note

Sorts each row separately!

In-place sort:

>>> a.sort(axis=1)
>>> a
array([[3, 4, 5],
[1, 1, 2]])

Sorting with fancy indexing:

>>> a = np.array([4, 3, 1, 2])
>>> j = np.argsort(a)
>>> j
array([2, 3, 1, 0])
>>> a[j]
array([1, 2, 3, 4])

Finding minima and maxima:

>>> a = np.array([4, 3, 1, 2])
>>> j_max = np.argmax(a)
>>> j_min = np.argmin(a)
>>> j_max, j_min
(0, 2)

1.3.2.6. Summary

What do you need to know to get started?

  • Know how to create arrays : array, arange, ones, zeros.

  • Know the shape of the array with array.shape, then use slicing to obtain different views of the array: array[::2], etc. Adjust the shape of the array using reshape or flatten it with ravel.

  • Obtain a subset of the elements of an array and/or modify their values with masks

    >>> a[a < 0] = 0
    
  • Know miscellaneous operations on arrays, such as finding the mean or max (array.max(), array.mean()). No need to retain everything, but have the reflex to search in the documentation (online docs, help(), lookfor())!!

  • For advanced use: master the indexing with arrays of integers, as well as broadcasting. Know more NumPy functions to handle various array operations.