1.4. Matplotlib: plotting

Authors: Nicolas Rougier, Mike Müller, Gaël Varoquaux

1.4.1. Introduction

1.4.1.1. IPython, Jupyter, and matplotlib modes

For interactive matplotlib sessions, turn on the matplotlib mode

IPython console:

When using the IPython console, use:

In [1]: %matplotlib
Jupyter notebook:

In the notebook, insert, at the beginning of the notebook the following magic:

%matplotlib inline

1.4.1.2. pyplot

import matplotlib.pyplot as plt

1.4.2. Simple plot

import numpy as np
X = np.linspace(-np.pi, np.pi, 256)
C, S = np.cos(X), np.sin(X)

X is now a numpy array with 256 values ranging from -\pi to +\pi (included). C is the cosine (256 values) and S is the sine (256 values).

To run the example, you can type them in an IPython interactive session:

$ ipython --matplotlib

This brings us to the IPython prompt:

IPython 0.13 -- An enhanced Interactive Python.
? -> Introduction to IPython's features.
%magic -> Information about IPython's 'magic' % functions.
help -> Python's own help system.
object? -> Details about 'object'. ?object also works, ?? prints more.

1.4.2.1. Plotting with default settings

../../_images/sphx_glr_plot_exercise_1_001.png

Hint

Documentation

import numpy as np
import matplotlib.pyplot as plt
X = np.linspace(-np.pi, np.pi, 256)
C, S = np.cos(X), np.sin(X)
plt.plot(X, C)
plt.plot(X, S)
plt.show()

1.4.2.2. Instantiating defaults

../../_images/sphx_glr_plot_exercise_2_001.png

Hint

Documentation

In the script below, we’ve instantiated (and commented) all the figure settings that influence the appearance of the plot.

import numpy as np
import matplotlib.pyplot as plt
# Create a figure of size 8x6 inches, 80 dots per inch
plt.figure(figsize=(8, 6), dpi=80)
# Create a new subplot from a grid of 1x1
plt.subplot(1, 1, 1)
X = np.linspace(-np.pi, np.pi, 256)
C, S = np.cos(X), np.sin(X)
# Plot cosine with a blue continuous line of width 1 (pixels)
plt.plot(X, C, color="blue", linewidth=1.0, linestyle="-")
# Plot sine with a green continuous line of width 1 (pixels)
plt.plot(X, S, color="green", linewidth=1.0, linestyle="-")
# Set x limits
plt.xlim(-4.0, 4.0)
# Set x ticks
plt.xticks(np.linspace(-4, 4, 9))
# Set y limits
plt.ylim(-1.0, 1.0)
# Set y ticks
plt.yticks(np.linspace(-1, 1, 5))
# Save figure using 72 dots per inch
# plt.savefig("exercise_2.png", dpi=72)
# Show result on screen
plt.show()

1.4.2.3. Changing colors and line widths

../../_images/sphx_glr_plot_exercise_3_001.png

Hint

Documentation

...
plt.figure(figsize=(10, 6), dpi=80)
plt.plot(X, C, color="blue", linewidth=2.5, linestyle="-")
plt.plot(X, S, color="red", linewidth=2.5, linestyle="-")
...

1.4.2.4. Setting limits

../../_images/sphx_glr_plot_exercise_4_001.png

Hint

Documentation

...
plt.xlim(X.min() * 1.1, X.max() * 1.1)
plt.ylim(C.min() * 1.1, C.max() * 1.1)
...

1.4.2.5. Setting ticks

../../_images/sphx_glr_plot_exercise_5_001.png

Hint

Documentation

...
plt.xticks([-np.pi, -np.pi/2, 0, np.pi/2, np.pi])
plt.yticks([-1, 0, +1])
...

1.4.2.6. Setting tick labels

../../_images/sphx_glr_plot_exercise_6_001.png

...
plt.xticks([-np.pi, -np.pi/2, 0, np.pi/2, np.pi],
[r'$-\pi$', r'$-\pi/2$', r'$0$', r'$+\pi/2$', r'$+\pi$'])
plt.yticks([-1, 0, +1],
[r'$-1$', r'$0$', r'$+1$'])
...

1.4.2.7. Moving spines

../../_images/sphx_glr_plot_exercise_7_001.png

...
ax = plt.gca() # gca stands for 'get current axis'
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.spines['bottom'].set_position(('data',0))
ax.yaxis.set_ticks_position('left')
ax.spines['left'].set_position(('data',0))
...

1.4.2.8. Adding a legend

../../_images/sphx_glr_plot_exercise_8_001.png

Hint

Documentation

...
plt.plot(X, C, color="blue", linewidth=2.5, linestyle="-", label="cosine")
plt.plot(X, S, color="red", linewidth=2.5, linestyle="-", label="sine")
plt.legend(loc='upper left')
...

1.4.2.9. Annotate some points

../../_images/sphx_glr_plot_exercise_9_001.png

Hint

Documentation

...
t = 2 * np.pi / 3
plt.plot([t, t], [0, np.cos(t)], color='blue', linewidth=2.5, linestyle="--")
plt.scatter([t, ], [np.cos(t), ], 50, color='blue')
plt.annotate(r'$cos(\frac{2\pi}{3})=-\frac{1}{2}$',
xy=(t, np.cos(t)), xycoords='data',
xytext=(-90, -50), textcoords='offset points', fontsize=16,
arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2"))
plt.plot([t, t],[0, np.sin(t)], color='red', linewidth=2.5, linestyle="--")
plt.scatter([t, ],[np.sin(t), ], 50, color='red')
plt.annotate(r'$sin(\frac{2\pi}{3})=\frac{\sqrt{3}}{2}$',
xy=(t, np.sin(t)), xycoords='data',
xytext=(+10, +30), textcoords='offset points', fontsize=16,
arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2"))
...

1.4.2.10. Devil is in the details

../../_images/sphx_glr_plot_exercise_10_001.png

Hint

Documentation

...
for label in ax.get_xticklabels() + ax.get_yticklabels():
label.set_fontsize(16)
label.set_bbox(dict(facecolor='white', edgecolor='None', alpha=0.65))
...

1.4.3. Figures, Subplots, Axes and Ticks

A “figure” in matplotlib means the whole window in the user interface. Within this figure there can be “subplots”.

1.4.3.1. Figures

Argument

Default

Description

num

1

number of figure

figsize

figure.figsize

figure size in inches (width, height)

dpi

figure.dpi

resolution in dots per inch

facecolor

figure.facecolor

color of the drawing background

edgecolor

figure.edgecolor

color of edge around the drawing background

frameon

True

draw figure frame or not

plt.close(1)     # Closes figure 1

1.4.3.2. Subplots

../../_images/sphx_glr_plot_subplot-horizontal_001.png ../../_images/sphx_glr_plot_subplot-vertical_001.png ../../_images/sphx_glr_plot_subplot-grid_001.png ../../_images/sphx_glr_plot_gridspec_001.png

1.4.3.3. Axes

Axes are very similar to subplots but allow placement of plots at any location in the figure. So if we want to put a smaller plot inside a bigger one we do so with axes.

../../_images/sphx_glr_plot_axes_001.png ../../_images/sphx_glr_plot_axes-2_001.png

1.4.3.4. Ticks

Well formatted ticks are an important part of publishing-ready figures. Matplotlib provides a totally configurable system for ticks. There are tick locators to specify where ticks should appear and tick formatters to give ticks the appearance you want. Major and minor ticks can be located and formatted independently from each other. Per default minor ticks are not shown, i.e. there is only an empty list for them because it is as NullLocator (see below).

Tick Locators

Tick locators control the positions of the ticks. They are set as follows:

ax = plt.gca()
ax.xaxis.set_major_locator(eval(locator))

There are several locators for different kind of requirements:

../../_images/sphx_glr_plot_ticks_001.png

All of these locators derive from the base class matplotlib.ticker.Locator. You can make your own locator deriving from it. Handling dates as ticks can be especially tricky. Therefore, matplotlib provides special locators in matplotlib.dates.

1.4.4. Other Types of Plots: examples and exercises

../../_images/sphx_glr_plot_plot_ext_001.png ../../_images/sphx_glr_plot_scatter_ext_001.png ../../_images/sphx_glr_plot_bar_ext_001.png ../../_images/sphx_glr_plot_contour_ext_001.png ../../_images/sphx_glr_plot_imshow_ext_001.png ../../_images/sphx_glr_plot_quiver_ext_001.png ../../_images/sphx_glr_plot_pie_ext_001.png ../../_images/sphx_glr_plot_grid_ext_001.png ../../_images/sphx_glr_plot_multiplot_ext_001.png ../../_images/sphx_glr_plot_polar_ext_001.png ../../_images/sphx_glr_plot_plot3d_ext_001.png ../../_images/sphx_glr_plot_text_ext_001.png

1.4.4.1. Regular Plots

../../_images/sphx_glr_plot_plot_001.png

Starting from the code below, try to reproduce the graphic taking care of filled areas:

Hint

You need to use the fill_between() command.

n = 256
X = np.linspace(-np.pi, np.pi, n)
Y = np.sin(2 * X)
plt.plot(X, Y + 1, color='blue', alpha=1.00)
plt.plot(X, Y - 1, color='blue', alpha=1.00)

Click on the figure for solution.

1.4.4.2. Scatter Plots

../../_images/sphx_glr_plot_scatter_001.png

Starting from the code below, try to reproduce the graphic taking care of marker size, color and transparency.

Hint

Color is given by angle of (X,Y).

n = 1024
rng = np.random.default_rng()
X = rng.normal(0,1,n)
Y = rng.normal(0,1,n)
plt.scatter(X,Y)

Click on figure for solution.

1.4.4.3. Bar Plots

../../_images/sphx_glr_plot_bar_001.png

Starting from the code below, try to reproduce the graphic by adding labels for red bars.

Hint

You need to take care of text alignment.

n = 12
X = np.arange(n)
rng = np.random.default_rng()
Y1 = (1 - X / float(n)) * rng.uniform(0.5, 1.0, n)
Y2 = (1 - X / float(n)) * rng.uniform(0.5, 1.0, n)
plt.bar(X, +Y1, facecolor='#9999ff', edgecolor='white')
plt.bar(X, -Y2, facecolor='#ff9999', edgecolor='white')
for x, y in zip(X, Y1):
plt.text(x + 0.4, y + 0.05, '%.2f' % y, ha='center', va='bottom')
plt.ylim(-1.25, +1.25)

Click on figure for solution.

1.4.4.4. Contour Plots

../../_images/sphx_glr_plot_contour_001.png

Starting from the code below, try to reproduce the graphic taking care of the colormap (see Colormaps below).

Hint

You need to use the clabel() command.

def f(x, y):
return (1 - x / 2 + x ** 5 + y ** 3) * np.exp(-x ** 2 -y ** 2)
n = 256
x = np.linspace(-3, 3, n)
y = np.linspace(-3, 3, n)
X, Y = np.meshgrid(x, y)
plt.contourf(X, Y, f(X, Y), 8, alpha=.75, cmap='jet')
C = plt.contour(X, Y, f(X, Y), 8, colors='black', linewidth=.5)

Click on figure for solution.

1.4.4.5. Imshow

../../_images/sphx_glr_plot_imshow_001.png

Starting from the code below, try to reproduce the graphic taking care of colormap, image interpolation and origin.

Hint

You need to take care of the origin of the image in the imshow command and use a colorbar()

def f(x, y):
return (1 - x / 2 + x ** 5 + y ** 3) * np.exp(-x ** 2 - y ** 2)
n = 10
x = np.linspace(-3, 3, 4 * n)
y = np.linspace(-3, 3, 3 * n)
X, Y = np.meshgrid(x, y)
plt.imshow(f(X, Y))

Click on the figure for the solution.

1.4.4.6. Pie Charts

../../_images/sphx_glr_plot_pie_001.png

Starting from the code below, try to reproduce the graphic taking care of colors and slices size.

Hint

You need to modify Z.

rng = np.random.default_rng()
Z = rng.uniform(0, 1, 20)
plt.pie(Z)

Click on the figure for the solution.

1.4.4.7. Quiver Plots

../../_images/sphx_glr_plot_quiver_001.png

Starting from the code below, try to reproduce the graphic taking care of colors and orientations.

Hint

You need to draw arrows twice.

n = 8
X, Y = np.mgrid[0:n, 0:n]
plt.quiver(X, Y)

Click on figure for solution.

1.4.4.8. Grids

../../_images/sphx_glr_plot_grid_001.png

Starting from the code below, try to reproduce the graphic taking care of line styles.

axes = plt.gca()
axes.set_xlim(0, 4)
axes.set_ylim(0, 3)
axes.set_xticklabels([])
axes.set_yticklabels([])

Click on figure for solution.

1.4.4.9. Multi Plots

../../_images/sphx_glr_plot_multiplot_001.png

Starting from the code below, try to reproduce the graphic.

Hint

You can use several subplots with different partition.

plt.subplot(2, 2, 1)
plt.subplot(2, 2, 3)
plt.subplot(2, 2, 4)

Click on figure for solution.

1.4.4.10. Polar Axis

../../_images/sphx_glr_plot_polar_001.png

Hint

You only need to modify the axes line

Starting from the code below, try to reproduce the graphic.

plt.axes([0, 0, 1, 1])
N = 20
theta = np.arange(0., 2 * np.pi, 2 * np.pi / N)
rng = np.random.default_rng()
radii = 10 * rng.random(N)
width = np.pi / 4 * rng.random(N)
bars = plt.bar(theta, radii, width=width, bottom=0.0)
for r, bar in zip(radii, bars):
bar.set_facecolor(plt.cm.jet(r / 10.))
bar.set_alpha(0.5)

Click on figure for solution.

1.4.4.11. 3D Plots

../../_images/sphx_glr_plot_plot3d_001.png

Starting from the code below, try to reproduce the graphic.

Hint

You need to use contourf()

from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = Axes3D(fig)
X = np.arange(-4, 4, 0.25)
Y = np.arange(-4, 4, 0.25)
X, Y = np.meshgrid(X, Y)
R = np.sqrt(X**2 + Y**2)
Z = np.sin(R)
ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='hot')

Click on figure for solution.

1.4.4.12. Text

../../_images/sphx_glr_plot_text_001.png

Try to do the same from scratch !

Hint

Have a look at the matplotlib logo.

Click on figure for solution.




1.4.5. Beyond this tutorial

Matplotlib benefits from extensive documentation as well as a large community of users and developers. Here are some links of interest:

1.4.5.1. Tutorials

  • Pyplot tutorial

    • Introduction

    • Controlling line properties

    • Working with multiple figures and axes

    • Working with text

  • Image tutorial

    • Startup commands

    • Importing image data into NumPy arrays

    • Plotting NumPy arrays as images

  • Text tutorial

    • Text introduction

    • Basic text commands

    • Text properties and layout

    • Writing mathematical expressions

    • Text rendering With LaTeX

    • Annotating text

  • Artist tutorial

    • Introduction

    • Customizing your objects

    • Object containers

    • Figure container

    • Axes container

    • Axis containers

    • Tick containers

  • Path tutorial

    • Introduction

    • Bézier example

    • Compound paths

  • Transforms tutorial

    • Introduction

    • Data coordinates

    • Axes coordinates

    • Blended transformations

    • Using offset transforms to create a shadow effect

    • The transformation pipeline

1.4.5.2. Matplotlib documentation

  • User guide

  • FAQ

    • Installation

    • Usage

    • How-To

    • Troubleshooting

    • Environment Variables

1.4.5.3. Code documentation

The code is well documented and you can quickly access a specific command from within a python session:

>>> import matplotlib.pyplot as plt
>>> help(plt.plot)
Help on function plot in module matplotlib.pyplot:
plot(*args: ...) -> 'list[Line2D]'
Plot y versus x as lines and/or markers.
Call signatures::
plot([x], y, [fmt], *, data=None, **kwargs)
plot([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs)
...

1.4.5.4. Galleries

The matplotlib gallery is also incredibly useful when you search how to render a given graphic. Each example comes with its source.

1.4.5.5. Mailing lists

Finally, there is a user mailing list where you can ask for help and a developers mailing list that is more technical.

1.4.6. Quick references

Here is a set of tables that show main properties and styles.

1.4.6.1. Line properties

Property

Description

Appearance

alpha (or a)

alpha transparency on 0-1 scale

../../_images/sphx_glr_plot_alpha_001.png

antialiased

True or False - use antialised rendering

../../_images/sphx_glr_plot_aliased_001.png ../../_images/sphx_glr_plot_antialiased_001.png

color (or c)

matplotlib color arg

../../_images/sphx_glr_plot_color_001.png

linestyle (or ls)

see Line properties

linewidth (or lw)

float, the line width in points

../../_images/sphx_glr_plot_linewidth_001.png

solid_capstyle

Cap style for solid lines

../../_images/sphx_glr_plot_solid_capstyle_001.png

solid_joinstyle

Join style for solid lines

../../_images/sphx_glr_plot_solid_joinstyle_001.png

dash_capstyle

Cap style for dashes

../../_images/sphx_glr_plot_dash_capstyle_001.png

dash_joinstyle

Join style for dashes

../../_images/sphx_glr_plot_dash_joinstyle_001.png

marker

see Markers

markeredgewidth (mew)

line width around the marker symbol

../../_images/sphx_glr_plot_mew_001.png

markeredgecolor (mec)

edge color if a marker is used

../../_images/sphx_glr_plot_mec_001.png

markerfacecolor (mfc)

face color if a marker is used

../../_images/sphx_glr_plot_mfc_001.png

markersize (ms)

size of the marker in points

../../_images/sphx_glr_plot_ms_001.png

1.4.6.2. Line styles

../../_images/sphx_glr_plot_linestyles_001.png

1.4.6.3. Markers

../../_images/sphx_glr_plot_markers_001.png

1.4.6.4. Colormaps

All colormaps can be reversed by appending _r. For instance, gray_r is the reverse of gray.

If you want to know more about colormaps, check the documentation on Colormaps in matplotlib.

../../_images/sphx_glr_plot_colormaps_001.png

1.4.7. Full code examples

1.4.7.1. Code samples for Matplotlib

The examples here are only examples relevant to the points raised in this chapter. The matplotlib documentation comes with a much more exhaustive gallery.

Pie chart

Pie chart

A simple, good-looking plot

A simple, good-looking plot

Plotting a scatter of points

Plotting a scatter of points

Subplots

Subplots

Horizontal arrangement of subplots

Horizontal arrangement of subplots

A simple plotting example

A simple plotting example

Subplot plot arrangement vertical

Subplot plot arrangement vertical

Simple axes example

Simple axes example

3D plotting

3D plotting

Imshow elaborate

Imshow elaborate

Plotting a vector field: quiver

Plotting a vector field: quiver

Displaying the contours of a function

Displaying the contours of a function

A example of plotting not quite right

A example of plotting not quite right

Plot and filled plots

Plot and filled plots

Plotting in polar coordinates

Plotting in polar coordinates

Bar plots

Bar plots

Subplot grid

Subplot grid

Axes

Axes

Grid

Grid

3D plotting

3D plotting

GridSpec

GridSpec

Demo text printing

Demo text printing

1.4.7.2. Code for the chapter’s exercises

Exercise 1

Exercise 1

Exercise 4

Exercise 4

Exercise 3

Exercise 3

Exercise 5

Exercise 5

Exercise 6

Exercise 6

Exercise 2

Exercise 2

Exercise 7

Exercise 7

Exercise 8

Exercise 8

Exercise 9

Exercise 9

Exercise

Exercise

1.4.7.3. Example demoing choices for an option

The colors matplotlib line plots

The colors matplotlib line plots

Linewidth

Linewidth

Alpha: transparency

Alpha: transparency

Aliased versus anti-aliased

Aliased versus anti-aliased

Aliased versus anti-aliased

Aliased versus anti-aliased

Marker size

Marker size

Marker edge width

Marker edge width

Colormaps

Colormaps

Solid joint style

Solid joint style

Solid cap style

Solid cap style

Marker edge color

Marker edge color

Marker face color

Marker face color

Dash capstyle

Dash capstyle

Dash join style

Dash join style

Markers

Markers

Linestyles

Linestyles

Locators for tick on axis

Locators for tick on axis

1.4.7.4. Code generating the summary figures with a title

3D plotting vignette

3D plotting vignette

Plotting in polar, decorated

Plotting in polar, decorated

Plot example vignette

Plot example vignette

Multiple plots vignette

Multiple plots vignette

Boxplot with matplotlib

Boxplot with matplotlib

Plot scatter decorated

Plot scatter decorated

Pie chart vignette

Pie chart vignette

Imshow demo

Imshow demo

Bar plot advanced

Bar plot advanced

Plotting quiver decorated

Plotting quiver decorated

Display the contours of a function

Display the contours of a function

Grid elaborate

Grid elaborate

Text printing decorated

Text printing decorated

Gallery generated by Sphinx-Gallery