Note
Go to the end to download the full example code.
3.3.11.10. Various denoising filtersΒΆ
This example compares several denoising filters available in scikit-image: a Gaussian filter, a median filter, and total variation denoising.
import numpy as np
import matplotlib.pyplot as plt
from skimage import data
from skimage import filters
from skimage import restoration
coins = data.coins()
gaussian_filter_coins = filters.gaussian(coins, sigma=2)
med_filter_coins = filters.median(coins, np.ones((3, 3)))
tv_filter_coins = restoration.denoise_tv_chambolle(coins, weight=0.1)
plt.figure(figsize=(16, 4))
plt.subplot(141)
plt.imshow(coins[10:80, 300:370], cmap="gray", interpolation="nearest")
plt.axis("off")
plt.title("Image")
plt.subplot(142)
plt.imshow(gaussian_filter_coins[10:80, 300:370], cmap="gray", interpolation="nearest")
plt.axis("off")
plt.title("Gaussian filter")
plt.subplot(143)
plt.imshow(med_filter_coins[10:80, 300:370], cmap="gray", interpolation="nearest")
plt.axis("off")
plt.title("Median filter")
plt.subplot(144)
plt.imshow(tv_filter_coins[10:80, 300:370], cmap="gray", interpolation="nearest")
plt.axis("off")
plt.title("TV filter")
plt.show()
Total running time of the script: (0 minutes 0.150 seconds)