3.3.11.11. Watershed and random walker for segmentationΒΆ

This example compares two segmentation methods in order to separate two connected disks: the watershed algorithm, and the random walker algorithm.

Both segmentation methods require seeds, that are pixels belonging unambigusouly to a reagion. Here, local maxima of the distance map to the background are used as seeds.

image, distance map, watershed segmentation, random walker segmentation
import numpy as np
from skimage.segmentation import watershed
from skimage.feature import peak_local_max
from skimage import measure
from skimage.segmentation import random_walker
import matplotlib.pyplot as plt
import scipy as sp
# Generate an initial image with two overlapping circles
x, y = np.indices((80, 80))
x1, y1, x2, y2 = 28, 28, 44, 52
r1, r2 = 16, 20
mask_circle1 = (x - x1) ** 2 + (y - y1) ** 2 < r1**2
mask_circle2 = (x - x2) ** 2 + (y - y2) ** 2 < r2**2
image = np.logical_or(mask_circle1, mask_circle2)
# Now we want to separate the two objects in image
# Generate the markers as local maxima of the distance
# to the background
distance = sp.ndimage.distance_transform_edt(image)
peak_idx = peak_local_max(distance, footprint=np.ones((3, 3)), labels=image)
peak_mask = np.zeros_like(distance, dtype=bool)
peak_mask[tuple(peak_idx.T)] = True
markers = measure.label(peak_mask)
labels_ws = watershed(-distance, markers, mask=image)
markers[~image] = -1
labels_rw = random_walker(image, markers)
plt.figure(figsize=(12, 3.5))
plt.subplot(141)
plt.imshow(image, cmap="gray", interpolation="nearest")
plt.axis("off")
plt.title("image")
plt.subplot(142)
plt.imshow(-distance, interpolation="nearest")
plt.axis("off")
plt.title("distance map")
plt.subplot(143)
plt.imshow(labels_ws, cmap="nipy_spectral", interpolation="nearest")
plt.axis("off")
plt.title("watershed segmentation")
plt.subplot(144)
plt.imshow(labels_rw, cmap="nipy_spectral", interpolation="nearest")
plt.axis("off")
plt.title("random walker segmentation")
plt.tight_layout()
plt.show()

Total running time of the script: (0 minutes 0.164 seconds)

Gallery generated by Sphinx-Gallery